A window-based time series feature extraction method
نویسندگان
چکیده
منابع مشابه
Feature eXtraction from sparse time series data
We present a computational methodology for qualitative analysis of sparse and noisy time series. Information about the changes of the signal level within a time series and the number of distinguishable signal levels is extracted and condensed into a pattern string. The qualitative analysis of a time series can be done at several levels of detail to generate pattern strings that encode the seque...
متن کاملMulti-dimensional sparse time series: feature extraction
We show an analysis of multi-dimensional time series via entropy and statistical linguistic techniques. We define three markers encoding the behavior of the series, after it has been translated into a multi-dimensional symbolic sequence. The leading component and the trend of the series with respect to a mobile window analysis result from the entropy analysis and label the dynamical evolution o...
متن کاملAMP: a new time-frequency feature extraction method for intermittent time-series data
The characterisation of time-series data via their most salient features is extremely important in a range of machine learning task, not least of all with regards to classification and clustering. While there exist many feature extraction techniques suitable for non-intermittent time-series data, these approaches are not always appropriate for intermittent timeseries data, where intermittency i...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملA Robust Wavelet Based Feature Extraction Method
In this paper, we propose a wavelet based feature extraction method with a high tolerance to white Gaussian noise. This method is also computationally efficient. Along with an HMM classifier, this method is used for face recognition. High recognition rates in the presence of white Gaussian noises with different variances show this technique as a promising feature extraction method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers in Biology and Medicine
سال: 2017
ISSN: 0010-4825
DOI: 10.1016/j.compbiomed.2017.08.011